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Density functional theory of charged colloidal systems

Derek Y. C. Chan*
Particulate Fluids Processing Centre, Department of Mathematics and Statistics, The University of Melbourne,

Parkville, Victoria 3010, Australia
~Received 15 November 2000; published 23 May 2001!

The phase behavior of charged colloidal systems has been studied recently by the density functional theory
formalism~DFT! @R. van Roij, M. Dijkstra, and J. P. Hansen, Phys. Rev. E59, 2010~1999!#. A key feature of
this approach is the appearance of a density and temperature-dependent effective Hamiltonian between the
charged colloids. Under certain approximations, the effective Hamiltonian is made up only of a sum of
position-independent one-body or volume terms and two-body colloid-separation dependent terms. In the limit
of low colloidal densities, the DFT results do not reduce to the familiar Debye-Hu¨ckel limiting law nor do the
results agree with previous work based on an identical approach but were developed using traditional
statistical-mechanical methods@B. Beresford-Smith, D. Y. C. Chan, and D. J. Mitchell J. Colloid Interface Sci.
105, 216 ~1985!#. This paper provides a reconciliation of these differences and comments on the significance
of the one-body volume terms in the effective Hamiltonian of a system of charged colloids in determining
thermodynamics and phase behavior.
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I. INTRODUCTION

The density functional theory~DFT! has been applied to
study the phase behavior of a charged colloidal system@1,2#
modeled as an asymmetric primitive model electrolyte
which the Coulombic interactions between the high
charged colloidal particles and the univalent counterions
treated explicitly, while the aqueous solvent is modeled a
dielectric continuum with a constant relative permittivity«.
For this model the configurational part of the Hamiltonian
the system is a sum of interactions between various io
species:

H~$Ri%,$r j%!5Hcolloid-colloid1Hcolloid-ion1H ion-ion. ~1!

Owing to the high charge asymmetry of the colloidal co
ponent, van Roij, Disjkstra, and Hansen~vRDH! @1,2# pro-
posed to first fix the colloids at positions$Ri% and average
over the coordinates$r j% of the ions to give an effective
colloid-colloid Hamiltonian

Heff~$Ri%!5Hcolloid-colloid1F~$Ri%!, ~2!

whereF($Ri%), defined by (b51/kT)

exp@2bF~$Ri%!#

[
1

VN1 E exp@2b~Hcolloid-ion1H ion-ion!#d$r j%

~3!

is the Helmholtz free energy of an inhomogeneous fluid
ions, obtained by averaging over the ion coordinates$r j% ( j
51,...,N1), in the external field due to the colloids fixed
positions $Ri% ( i 51..N0). As a consequence, the colloid
can now be regarded as a one-component system chara
ized by the effective Hamiltonian,Heff($Ri%) which is a sum
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of the termHcolloid-colloid that contains the direct Coulomb an
short-ranged interaction between colloids and the state
pendent quantityF($Ri%). Thermodynamics of the colloida
system was then obtained for this one-component system
colloids governed by the effective Hamiltonian,Heff($Ri%).
The DFT, with certain approximations, was then use to c
culateF($Ri%).

The DFT results of vRDH@1,2# have the following fea-
tures:

~i! The expression for the effective Hamiltonia
Heff($Ri%) contains a position independent but temperat
and density dependent constant or volume term that ar
from F($Ri%) and this term has been regarded to have s
cial significance in determining the phase behavior of C
lombic systems.

~ii ! The colloid position dependent portion ofHeff($Ri%) is
comprised of a sum of pairwise interactions between the
loids, which have the screened Coulomb form. The screen
parameter has the familiar Debye form and depends only
the concentrations of counterions and added salt conce
tion.

~iii ! In the low colloid density limit and in the absence
added salt, the Coulombic part of the free energy of
system has the characteristic~3/2!-power dependence on th
concentration of all charged species but has a different
pendence on the colloid valency@3# to the Debye-Hu¨ckel
limiting law.

In an earlier study of the structure of colloidal system
Beresford-Smith, Chan, and Mitchell~BCM! @4# followed an
identical approach but used a traditional statistic
mechanical formulation to derive the effective Hamiltoni
for the colloidal particles. While the results of BCM and th
of vRDH should be identical because they studied essent
the same system under the same approximations, there a
fact a number of similarities and differences:

~i! The position independent but temperature and den
dependent constant or volume term in the effective Ham
tonian obtained by BCM has one more term than that deri
from the DFT. However, this volume term did not, in th
©2001 The American Physical Society06-1
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final analysis, contribute to the system thermodynamics.
deed, one can provide a very general argument to sup
this.

~ii ! BCM and vRDH employed the same approximatio
in treating the model and therefore in both cases the col
position dependent portion ofHeff($Ri%) contains the same
sum of screened Coulomb terms for the pairwise interacti
between the colloids.

~iii ! BCM took a different route to calculate system the
modynamics from the effective HamiltonianHeff($Ri%) and
recovered the Debye-Hu¨ckel limiting law behavior at low
colloid densities and also revealed a delicate cancelatio
contributions to system thermodynamics from the colloid p
sition independent one-body volume term and from the
sition dependent interaction terms inHeff($Ri%).

The aim of this paper is to provide a reconciliation b
tween the more modern DFT formulation and the older f
malism and also to offer some general remarks about the
of the volume term in the free energy and the effect
Hamiltonian approach in charged systems.

For this purpose, we therefore consider a colloidal sys
modeled as a primitive model electrolyte in a volumeV,
which containsN0 colloids at number densityn05N0 /V and
valenceZ(@1), balanced byN1 counterions of number den
sity n15N1 /V and valence~21!. There is no added salt an
the following bulk electroneutrality condition holds:

n0Z1n1~21!50. ~4!

The presence of added salt can be easily included but it d
add to the algebraic complexity without altering the k
physical conclusions. For pedagogic reasons we prefe
keep the system simple to bring out the key ideas that h
in identifying and reconciling the differences between t
two treatments of the same model. To this end, we will c
sider the case of point ions and point colloids, which w
facilitate the analytic demonstration of the contribution
various terms. Again, the inclusion of the colloid size can
incorporated as an extension but this does not alter the m
conclusions—added salt and size effects will be discusse
the concluding section.

II. DENSITY FUNCTIONAL THEORY

The DFT involves the construction of the Helmholtz fre
energy functionalF @n(1)(r )# which depends on the varia
tional or trial number density profile,n(1)(r ) of counterions
for a given configuration of colloids at positions$Ri%. The
equilbrium density profile n(r ) is found by the Euler-
Lagrange condition

dF @n~1!~r !#

dn~1!~r !
5m at n~1!~r !5n~r !, ~5!

where the Lagrange multiplierm is chosen to satisfy the fol
lowing normalization condition on the ion number density

E n~r !dr5N15n1V. ~6!
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The ion-averaged Helmholtz free energyF($Ri%), defined
earlier, is related to the equilibrium density profilen(r ) by

F~$Ri%!5F @n~r !#. ~7!

We now recapitulate the salient features of the vRD
formulation of the DFT@2#. The functionalF is taken to
have contributions from entropic terms of the mobile cou
terions treated as an ideal gas,Fid, from the external field
due to the colloids at fixed positions$Ri%,Fex, from Cou-
lomb interactions between the counterions,FCoul, and from
counterion-counterion correlations,Fcorr:

F5Fid1Fext1FCoul1Fcorr, ~8!

These four terms are assumed to take the following for
@2#:

Fid5kTE n~1!~r !$ ln@n~1!~r !L3#21%dr

.VkT@n1 ln~n1L3!2n1#1
kT

2n1
E @n~1!~r !2n1#2dr ,

~9!

Fext5(
i 51

N0 E @Ze#@2en~1!~r !#

«ur2Ri u
dr , ~10!

FCoul5
1

2 E @2en~1!~r !#@2en~1!~r 8!#

«ur2r 8u
drdr 8, ~11!

Fcorr50, ~12!

whereL is the counterion thermal wavelength ande the pro-
tonic charge.

The use of the ideal-gas expression in the first line of E
~9! places this DFT formulation at the same level as
mean-field nonlinear Poisson-Boltzmann theory and the
pansion to quadratic order in local inhomogeneities in
second line of Eq.~9! is equivalent to linearizing the
Poisson-Boltzmann equation. Similar approximations w
also made in the BCM calculation. The Coulomb interacti
terms in Eqs.~10! and~11! have exact analogues in the BCM
treatment. So far, the assumptions in vRDH and BCM
identical.

The neglect of correlation effects,Fcorr50, in Eq.~12! is
one of the differences between the vRDH approach and
BCM approach~see discussion that follows Eq.~45! below!.
This assumption is also equivalent to neglecting effects fr
the fluctuation potential, which is normally included in th
family of Modified Poisson-Boltzmann theories@5# of Cou-
lombic systems. The neglect of ion-ion correlation effects
one reason why the vRDH treatment will not reduce to
Debye-Hückel limiting law because the treatment of Co
lombic interactions involving ions and colloids is no long
symmetric as it is in the Debye-Hu¨ckel theory.

The equation for the equilibrium counterion densityn(r )
is obtained by taking the first variation
6-2
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DENSITY FUNCTIONAL THEORY OF CHARGED . . . PHYSICAL REVIEW E63 061806
d$F@n~1!~r !#2m@*n~1!~r !dr2N1#%

dn~1!~r !
50 at n~1!~r !5n~r !,

~13!

which gives

n~r !

n1
511bec~r !1bm, ~14!

where

c~r ![(
i 51

N0 Ze

«ur2Ri u
1E @2en~r 8!#

«ur2r 8u
dr 8 ~15!

can be interpreted as the mean electrostatic potential atr , due
to the colloids being fixed at positions$Ri% and to the coun-
terions at the equilibrium density profilen(r ).

What follows diverges slightly from vRDH who carrie
out their analysis in Fourier space. We shall not use
approach but the difference is only technical while the phy
cal content remains unaffected. Using Eq.~14! we can see
that Eq.~15! is equivalent to the differential equation

“

2n~r !2k1
2n~r !52k1

2Z(
i 51

N0

d~r2Ri !, ~16!

where

k1
2[

4pn1be2

«
~17!

is the inverse Debye screening length due only to the co
terions. The bounded solution of Eq.~16! is

n~r !5
k1

2Z

4p (
i 51

N0 exp@2k1~r2Ri !#

ur2Ri u
~DFT!. ~18!

It is easy to verify that this result for the ion densi
satisfies the ion number normalization condition in Eq.~6!
and therefore by integrating Eqs.~14! and~15! we can estab-
lish the result:m50. To carry out the necessary algeb
vRDH suggested the standard technique of replacing
(1/r ) kernels in the integrals in Eq.~15! by (exp@2ar#/r) to
handle the apparent divergencies, and then take the lima
→0 at the end of the calculation.

We can now use the result for the equilibrium ion dens
n(r ), Eq. ~18!, in Eqs.~9!–~11! to give (Ri j [uRi2Rj u)

Fid5VkT@n1 ln~n1L3!2n1#1
kT

2n1
E @n~r !2n1#2dr

5VkT@n1 ln~n1L3!2n1#

1
Z2e2k1

4« (
i 51

N0

(
j 51
iÞ j

N0

exp@2k1Ri j #

1
Z2e2k1

4«
N02

1

2
ZN0kT, ~19!
06180
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Fext5(
i 51

N0 E @Ze#@2en~r !#

«ur2Ri u
dr

52
Z2e2k1

«
N02

Z2e2

« (
i 51

N0

(
j 51
iÞ j

N0 12exp@2k1Ri j #

Ri j
,

~20!

FCoul5
1

2 E @2en~r !#@2en~r 8!#

«ur2r 8u
drdr 8

5
Z2e2

2« (
i 51

N0

(
j 51
iÞ j

N0 12exp@2k1Ri j #

Ri j

2
Z2e2k1

4« (
i 51

N0

(
j 51
iÞ j

N0

exp@2k1Ri j #1
Z2e2k1

4«
N0 .

~21!

Inserting the results in Eqs.~19!–~21! into Eqs.~7! and
~8! gives

F~$Ri%!5F@n~r !#

5VkT@n1 ln~n1L3!2n1#

2S Z2e2k1

2«
N01

1

2
ZN0kTD

1
Z2e2

2« (
i 51

N0

(
j 51
iÞ j

N0 exp@2k1Ri j #

Ri j
2

Z2e2

2« (
i 51

N0

(
j 51
iÞ j

N0 1

Ri j

~22!

and from Eq.~2! with

Hcolloid-colloid5
1

2 (
i 51

N0

(
j 51
iÞ j

N0 Z2e2

«Ri j
, ~23!

we find for the effective Hamiltonian

Heff~$Ri%!5VkT@n1 ln~n1L3!2n1#

2S Z2e2k1

2«
N01

1

2
ZN0kTD

1
Z2e2

2« (
i 51

N0

(
j 51
iÞ j

N0 exp@2k1Ri j #

Ri j
~DFT!.

~24!

The first term in Eq.~24! is the ideal-gas free energy. Th
terms in parenthesis

F1[2S Z2e2k1

2«
N01

1

2
ZN0kTD ~DFT! ~25!

is the one-body or volume term of vRDH~for point ions and
point colloids! which depends on density and temperatu
6-3
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DEREK Y. C. CHAN PHYSICAL REVIEW E 63 061806
but not on colloid positions. This term is always negative a
gives a cohesive contribution to the free energy. The fi
term is a sum of two-body screened Coulomb potentials
the form

ueff~Ri j ![
Z2e2 exp@2k1Ri j #

«Ri j
~26!

between the colloids with the screening length (1/k1) that
depends only on the counterion concentration, Eq.~17!. The
effective two-body potentialueff(Rij) between colloids is a
temperature or state dependent quantity throughk1 and re-
flects its character as a free energy.

The next step is to calculate the free energy of the sys
from Eq. ~24!. In the vRDH paper, they used a variation
method to estimate the free energy fromueff(Rij). In the low-
density limit, they estimated this contribution to be@2#

F25
1

2
N0n0E ueff~r !dr

5
1

2
ZN0kT ~DFT low-density limit! ~27!

and the total free energy in the low-density limit becomes@3#

F5F11F2

5VkT@n1 ln~n1L3!2n1#2S Z2e2k1

2«
N01

1

2
ZN0kTD

1
1

2
ZN0kT

5VkT@n1 ln~n1L3!2n1#2
Z2e2k1

2«
N0

5VkT@n1 ln~n1L3!2n1#2
kTk0

2k1

8p
V ~DFT!, ~28!

which is different to the Debye-Hu¨ckel limiting law result
@6#

F5VkT@n1 ln~n1L3!2n1#

2
kTkD

3

12p
V ~Debye-Hückel limiting law! ~29!

where

kD
2 5

4pbe2

«
n0Z21

4pbe2

«
n1[k0

21k1
2 ~30!

is the usual Debye screening parameter for the whole sys
that includes contributions from the charged colloids and
counterions. The difference between Eqs.~28! and ~29! is
significant, especially forZ@1 and this may be important in
determining phase equilibria.
06180
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III. STATISTICAL-MECHANICAL THEORY „SMT…

The starting point of the statistical-mechanical theory
BCM @4# is the formal expression of the effective Ham
tonian,Heff($Ri%) expressed as an integral over the count
ion coordinates$r i%

exp@2bHeff~$Ri%!#5
1

VN1 E exp@2bH~$Ri%,$r j%!# d$r j%

[^exp@2bH~$Ri%,$r j%!#&, ~31!

where ^•••& denotes an average over the counterion coo
nates. The strategy is to calculateHeff($Ri%), which is a free
energy, by a temperature integration of the correspond
internal energy. To do this we define the total charge-den
operatorr̂(r ) for the colloids and the counterions by

r̂~r !5Ze(
i 51

N0

d~r2Ri !1~2e!(
j 51

N1

d~r2r j ![r̂0~r !1 r̂1~r !

~32!

and the electrostatic potential operatorĉ(r ) by

ĉ~r !5(
i 51

N0 Ze

«ur2Ri u
1(

j 51

N1 ~2e!

«ur2r j u
5E r̂~r !

«ur2r 8u
dr 8

~33!

so that the Hamiltonian describing Coulombic interactions
the colloidal system is

H~$Ri%,$r i%!5
1

2 (
i , j

iÞ j

~Ze!2

«uRi2Rj u
1(

i , j
iÞ j

~Ze!~2e!

«uRi2r j u

1
1

2 (
i , j

iÞ j

~2e2!

«uRi2r j u

5
1

2 E r̂~r !ĉ~r !dr2Es , ~34!

whereEs is the electrostatic self-energy of the ions and c
loids that originates from the extrai 5 j terms that have been
included in the integral in the second line of Eq.~34!. Dif-
ferentiating Eq.~31! with respect tob, and using Eq.~34! we
have the exact relation

]@bHeff~$Ri%!#

]b
5

1

2 E ^r̂~r !ĉ~r !&dr2Es . ~35!

The charge-potential correlation function̂r̂(r )ĉ(r )& can
now be split formally into a sum of a mean-field ter

^r̂(r )&^ĉ(r )& and a correlation term using Eq~33!:
6-4
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^r̂~r !ĉ~r !&[^r̂~r !&^ĉ~r !&

1E ^r̂~r !r̂~r 8!&2^r̂~r !&^r̂~r 8!&
«ur2r 8u

dr 8

5^r̂~r !&^ĉ~r !&

1E e2n~r !@d~r2r 8!1h11~r ,r 8!#n~r 8!

«ur2r 8u
dr 8,

~36!

where the integral in the second line in Eq.~36! only de-
pends on the counterion number densityn(r ) and defines the
counterion-counterion correlation functionh11(r ,r 8) in the
external field provided by the fixed colloidal particles@4#. So
Eq. ~35! becomes

]@bHeff$Ri%#

]b
5

1

2 E ^r̂~r !&^ĉ~r !&dr2Es

1
1

2 E e2n~r !@d~r2r 8!1h11~r ,r 8!#n~r 8!

«ur2r 8u

3dr dr 8. ~SMT! ~37!

This is a completely general result. The next step is to de
mine the average charge density^r̂(r )&, the average electro
static potential̂ ĉ(r )&, the counterion number densityn(r ),
and the counterion-counterion correlation functionh11(r ,r 8)
in order to evaluate this expression.

The average total charge density^r̂(r )& and electrostatic
potential^ĉ(r )& and electrostatic potential are related by t
Poisson equation

“

2^ĉ~r !&52
4p

«
^r̂~r !& ~38!

with average charge density

^r̂~r !&5Ze(
i 51

N0

d~r2Ri !1~2e!n~r !. ~39!

To close Eqs.~38! and~39! we assume the linearized Boltz
mann distribution

n~r !5n1 exp@1be^ĉ~r !&2c̄ !]

>n1$11be~^ĉ~r !&2c̄ !%, ~SMT! ~40!

where c̄ is the ~constant! potential at the position wher
n(r )5n1 . Combining Eqs.~38!–~40!, we see that

“

2n~r !2k1
2n~r !52k1

2Z(
i 51

N0

d~r2Ri ! ~41!

with the bounded solution
06180
r-

n~r !5
k1

2Z

4p (
i 51

N0 exp@2k1~r2Ri !#

ur2Ri u
~SMT!, ~42!

which is the same as the result in Eqs.~16!–~18! for the
DFT.

To find the correlation functionh11(r ,r 8), we consider the
fluctuation potentialw(r ,r 8) which is the potential atr given
that the colloids are fixed at$Ri% and one counterion o
charge~21! is atr 8. The potentialw(r ,r 8) therefore satisfies
the following Poisson equation:

“

2w~r ,r 8!52
4p

« H Ze(
i 51

N0

d~r2Ri !1~2e!n~r !

3@11h11~r ,r 8!#1~2e!d~r2r 8!J . ~43!

The mean-field closures

h11~r ,r 8!>2b~2e!w~r ,r 8!,

n~r !>n1 ,

(
i 51

N0

d~r2Ri !>n0 ~44!

provide the approximate solution

h11~r ,r 8!>2
be2

«

exp@2k1~r2r 8!#

ur2r 8u
~SMT!. ~45!

The key results for the counterion densityn(r ) in Eqs.
~40! and ~42! and for the correlation functionh11(r ,r 8) in
Eq. ~45!, can now be inserted in Eq.~37! to give the effective
HamiltonianHeff($Ri%). The constant potentialc̄ drops out
of the calculation because of the neutrality conditio
*^r̂(r )&dr50. After some algebra, see Ref.@4#, and adding
the ideal-gas reference term, we have the result for the ef
tive Hamiltonian

Heff~$Ri%!5VkT@n1 ln~n1L3!2n1#

2S Z2e2k1

2«
N01

Ze2k1

3«
N01

1

2
ZN0kTD

1
Z2e2

2« (
i 51

N0

(
j 51
iÞ j

N0 exp@2k1Ri j #

Ri j
~SMT!.

~46!

This is almost identical to the DFT result in Eq.~24!—the
separation dependent effective pair potential is the sam
both theories. However, the one body or volume term, in
parenthesis in Eq.~46!, obtained from the SMT, contains th
extra term$Ze2k1N0 /(3«)%:
6-5
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F1[2S Z2e2k1

2«
N01

Ze2k1

3«
N01

1

2
ZN0kTD ~SMT!.

~47!

This additional term originates from the second term on
right-hand side of Eq.~37! that depends on the correlatio
function h11(r ,r 8), and this is equivalent to the contributio
from the correlation functionalFcorr, Eq. ~8!, that has been
neglected in the DFT treatment, Eq.~12!.

IV. THE ONE-BODY VOLUME TERM

In the DFT treatment, the one-body volume term,F1 has
special significance because at low densities, the free en
of the system originates from this term, see Eq.~28!, and
therefore it appears to have a fundamental role in the st
of phase behavior in Coulombic systems@2#.

However, the formula in Eq.~27! for estimating the con-
tribution of the effective pair potentialueff(Rij) to the free
energy is inadequate in this situation. For short-ranged t
perature independent pair potentials, this formula does g
the leading-order result in density. However, for long-rang
state dependent potentials such asueff(Rij), its use will lead to
omission of terms of equal order in density. Instead, as
typical in Coulombic systems, we need to sum ring diagra
to ensure we collect all terms of the same order in den
n0 . For a system with a pair potentialueff(r), the two-body
free energyF2 can be calculated with the following formul
that involves a coupling constantl integration;

F25E
0

1S 1

2
N0n0E @lueff~r !#@11h00~r ,l!#dr Ddl/l,

~48!

whereh00(r ,l) is the total colloid-colloid correlation func
tion of a one-component system of colloidal particles t
interact with pair potential@lueff(r)#. We now sum simple
ring diagrams by calculatingh̃00(k,l), the Fourier transform
of h00(r ,l), which is a function of wave numberk, via the
Ornstein-Zernike equation:

h̃00~k,l!5
c̃00~k,l!

12n0c̃00~k,l!
~49!

with

c00~r ,l!52l
ueff~r !

kT
52l

~Ze!2

«kT

exp@2k1r #

r
, r .0.

~50!

Combining Eqs.~49! and ~50! gives

h00~r ,l!5l
~Ze!2

«kT

exp@2kD~l!r #

r
, r .0, ~51!

where

kD~l!5~lk0
21k1

2!1/2. ~52!
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Using Eqs.~51! and~52! in Eq. ~48!, we obtain for the two-
body free energy,F2

F25S Z2e2k1

2«
N01

Ze2k1

3«
N01

1

2
ZN0kTD2

kTkD
3

12p
V.

~53!

Therefore from Eqs.~47! and~53! we have the final expres
sion for the free energy

F5F11F25H VkT@n1 ln~n1L3!2n1#

2S Z2e2k1

2«
N01

Ze2k1

3«
N01

1

2
ZN0kTD J

1H S Z2e2k1

2«
N01

Ze2k1

3«
N01

1

2
ZN0kTD2

kTkD
3

12p
VJ

5VkT@n1 ln~n1L3!2n1#2
kTkD

3

12p
V ~SMT!, ~54!

which is in agreement with the Debye-Hu¨ckel limiting law.
We observe that the constant one-body volume termF1 is

canceled exactly by identical terms that form part of the f
energyF2 that has its origin in the effective pair potenti
ueff(r). This cancelation is more that just a curiosity of th
Debye-Hückel treatment. Indeed, Belloni has constructed
general and powerful argument regarding the one-body
ume term by considering the compressibility equation t
relates thermodynamics and correlations functions@10#. In
the present context, this argument proceeds as follows.

The most general form of effective Hamiltonian can
written as

Heff~$Ri%!5F11W~$Ri%!, ~55!

where W($Ri%) may contain two-, three- and higher-bod
terms. It is clear that all ensemble averages of quantities
only depend on the colloid coordinates, such as the collo
colloid pair-correlation function,h00(r ) or its Fourier trans-
form, h̃00(k) can only depend onW($Ri%) and not on the
constant one-body volume termF1 . One route to thermody-
namic properties is via the compressibility equation@6#

2
kT

V

]V

]P

5
@11n1h̃11~0!#@11n0h̃00~0!#2n0n1@ h̃01~0!#2

n0@11n1h̃11~0!#1n1@11n0h̃00~0!#22n0n1h̃01~0!

5
1

n0

@11n0h̃00~0!#5
1

n1

@11n1h̃11~0!#, ~56!

where the local electroneutrality conditions about a sin
charged colloid or counterion
6-6
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Z52n0Zh̃00~0!1n1h̃01~0!,

2152n0Zh̃10~0!1n1h̃11~0!, ~57!

have been used to express the first line of Eq.~56! in terms of
only the correlation function:h̃00(0) or h̃11(0) in subsequen
lines. In particular, from the second equality of Eq.~56!, we
can see that for the salt free system, all thermodynamic qu
tities can be expressed only in terms of the colloid-collo
pair-correlation functionh̃00(0), which in turn does not de
pend on the constant one-body volume termF1 . However,
the constant one-body volume term will play a role in the
retical approaches that involves constructing the total f
energy in successive stages such as with the DFT form
tion, where the one- and two-body contributions to the f
energy is formulated and calculated separately. In such
approach, the role of the one-body volume term will be
cancel out a corresponding contribution from the posit
dependent part of the effective Hamiltonian rather than be
the source of the free-energy term that controls phase be
ior as inferred earlier@2#.

The third equality of Eq.~56! reveals the importance o
including ion-ion correlations as well because the assu
tion Fcorr50 is equivalent to assuming the counterio
counterion correlationh̃11(0)50, and thereby violates one o
the local electroneutrality conditions in Eq.~57!.

V. CONCLUSIONS

Modern DFT has been brought to bear on the problem
phase behavior in colloidal systems whose properties
dominated by Coulombic interactions. While the DFT fo
malism has enjoyed much success in solid-state physics
application to colloidal problems requires making the nec
sary theoretical connections with established approache
the colloid literature and the clarification of its status w
respect to other existing theories. While the discussion
pedagogic illustrations presented herein are only based
point-ion and point-colloid model without added salt, it do
serve to highlight the subtleties of the problem and the re
tions between different theoretical approaches. We h
shown that the DFT formalism@2# is identical to the earlier
statistical-mechanical theory@4# provided that

~i! ion correlations effects are included in the DFT, an
~ii ! the calculation of the free energy from the effecti

pair potentialueff(r) is consistent with the calculation of th
one-body volume term in so far as obtaining consistent
ders in the number density as typical in Coulombic syste

Clearly a creditable model of colloidal systems, ev
within the primitive model, should allow for the colloids an
counterions to have different hard-sphere radiiR0 andR1 . In
this case, the excess internal energy due to Coulombic in
actions has the general form (a, b50, 1)
06180
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Ecoul

V
5

e2

2« (
a,b

nazanbzbE hab~r !

r
dr

5
2pe2

« (
a,b

nazanbzbE
Ra1Rb

`

rhab~r ! dr

2
pe2

« (
a,b

nazanbzb~Ra1Rb!2. ~58!

The first term in the second line depends on the~yet to be
determined! pair-correlations functionshab(r ) while the sec-
ond term is exact and is a consequence of the straightforw
coupling between Coulombic interactions and particle s
differences that comes form the energy integral in the in
val 0,r ,(Ra1Rb) wherehab(r )521. This second term
is negligible for ionic size differences typical for ionic solu
tions. However, for size asymmetries that are character
of colloids and ions, this term can account for up to 50%
the internal energy when compared to Monte Carlo simu
tion studies@7#. Recent attempts at modeling phase behav
driven by Coulombic interactions in colloidal systems@1,2,8#
all seem not to have fully accounted for this size-asymme
contribution and its importance in determining Coulomb
teraction driven phase behavior in colloidal systems has o
just been considered@9#. Furthermore, the introduction o
finite sizes for the ionic components will generate terms
yond just two-body effective potentials in the effectiv
Hamiltonian and the importance of such higher body ter
remain to be quantified@10#.

In the salt-free case, the inclusion of size asymmetry
tween the colloid and the counterions is sufficient to give r
to a gas-liquid phase equilibrium@9#. The general physica
reason for this equilibrium is easy to understand although
present linear Debye-Hu¨ckel treatment may not be accura
with the quantitative details of the phase boundary. With
addition of salt, the DFT theory predicts the existence o
upper as well as a lower critical salt concentration betwe
which the system can exhibit gas-liquid phase equilibriu
@2#. The physical reason for the existence of lower critic
salt concentration is less obvious.

The role of Coulombic effects on phase separation in c
loidal systems is a problem first studied by Langmuir@11#
many years ago and the problem remains open today.
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