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Density functional theory of charged colloidal systems
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The phase behavior of charged colloidal systems has been studied recently by the density functional theory
formalism(DFT) [R. van Roij, M. Dijkstra, and J. P. Hansen, Phys. Re%9£2010(1999]. A key feature of
this approach is the appearance of a density and temperature-dependent effective Hamiltonian between the
charged colloids. Under certain approximations, the effective Hamiltonian is made up only of a sum of
position-independent one-body or volume terms and two-body colloid-separation dependent terms. In the limit
of low colloidal densities, the DFT results do not reduce to the familiar Debyekéldimiting law nor do the
results agree with previous work based on an identical approach but were developed using traditional
statistical-mechanical methofB. Beresford-Smith, D. Y. C. Chan, and D. J. Mitchell J. Colloid Interface Sci.
105 216(1985]. This paper provides a reconciliation of these differences and comments on the significance
of the one-body volume terms in the effective Hamiltonian of a system of charged colloids in determining
thermodynamics and phase behavior.
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. INTRODUCTION of the termH .g0i4-colloid that contains the direct Coulomb and
short-ranged interaction between colloids and the state de-
The density functional theoryDFT) has been applied to pendent quantity ({R;}). Thermodynamics of the colloidal
study the phase behavior of a charged colloidal sy§te®]  system was then obtained for this one-component system of
modeled as an asymmetric primitive model electrolyte incolloids governed by the effective Hamiltoniad S ({R;}).
which the Coulombic interactions between the highlyThe DFT, with certain approximations, was then use to cal-
charged colloidal particles and the univalent counterions areulateF ({R;}).
treated explicitly, while the aqueous solvent is modeled as a The DFT results of vVRDH1,2] have the following fea-
dielectric continuum with a constant relative permittivily  tyres:
For this model the configurational part of the Hamiltonian of (i) The expression for the effective Hamiltonian
the system is a sum of interactions between various ioni¢{¢f({R;}) contains a position independent but temperature
Species: and density dependent constant or volume term that arises
from F({R;}) and this term has been regarded to have spe-
H({Ri}.{r;}) =Hooltig-cotioia™ Heoloid-ion Hiondon- (1) cial sigrfific}énce in determining the phase behavior of Cou-
Owing to the high charge asymmetry of the colloidal com-/0mbiC systems. L _ . _
ponent, van Roij, Disjkstra, and Hansé&rRDH) [1,2] pro- (i) The colloid p05|t|on.de'pen.dent portion |f"({R;}) is
posed to first fix the colloids at positiod®,} and average cqmprlsgd of a sum of pairwise interactions between the cpl—
over the coordinategr;} of the ions to give an effective loids, which have the screened Coulomb form. The screening

colloid-colloid Hamiltonian parameter has_ the familiar De_bye form and depends only on
the concentrations of counterions and added salt concentra-
H"({R;}) = H colig-cotoia F{Ri}), (2) tion. . o _
(iii ) In the low colloid density limit and in the absence of
whereF ({R;}), defined by 3=1/KkT) added salt, the Coulombic part of the free energy of the
system has the characteris{®/2)-power dependence on the
exd —BF({Ri})] concentration of all charged species but has a different de-
1 pendence on the colloid valend$] to the Debye-Hakel
= W J' eXF{ - B(Hcolloid-ion+ Hion-ion)]d{rj} |Imltlng law.

In an earlier study of the structure of colloidal systems,
(3) Beresford-Smith, Chan, and MitchéBCM) [4] followed an
identical approach but used a traditional statistical-
is the Helmholtz free energy of an inhomogeneous fluid ofmechanical formulation to derive the effective Hamiltonian
ions, obtained by averaging over the ion coordingte (j for the colloidal particles. While the results of BCM and that
=1,..N,), in the external field due to the colloids fixed at of vRDH should be identical because they studied essentially
positions{R;} (i=1.Ny). As a consequence, the colloids the same system under the same approximations, there are in
can now be regarded as a one-component system charactéset a number of similarities and differences:
ized by the effective Hamiltoniad *™({R;}) which is a sum (i) The position independent but temperature and density
dependent constant or volume term in the effective Hamil-
tonian obtained by BCM has one more term than that derived
*Email address: D.Chan@ms.unimelb.edu.au from the DFT. However, this volume term did not, in the
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final analysis, contribute to the system thermodynamics. InThe ion-averaged Helmholtz free energ¥{R;}), defined
deed, one can provide a very general argument to suppogarlier, is related to the equilibrium density profilér) by
this.
(i) BCM and vRDH employed the same approximations F{R;})=F[n(r)]. 7
in treating the model and therefore in both cases the colloid
position dependent portion df®f({R;}) contains the same We now recapitulate the salient features of the vRDH
sum of screened Coulomb terms for the pairwise interactionformulation of the DFT[2]. The functional F is taken to
between the colloids. have contributions from entropic terms of the mobile coun-
(iii) BCM took a different route to calculate system ther-terions treated as an ideal ga&gy, from the external field
modynamics from the effective Hamiltoniah®({R;}) and  due to the colloids at fixed positioR;}, e, from Cou-
recovered the Debye-Hkel limiting law behavior at low lomb interactions between the counteriofg,,,, and from
colloid densities and also revealed a delicate cancelation gfounterion-counterion correlation®,:
contributions to system thermodynamics from the colloid po-
sition independent one-body volume term and from the po- F=Fiat Fextt Feout Feorr: (8)
sition dependent interaction terms Kf({R;}).
The aim of this paper is to provide a reconciliation be- These four terms are assumed to take the following forms
tween the more modern DFT formulation and the older for-2:
malism and also to offer some general remarks about the role
of the volume term in the free energy and the effective - _ (1) (1) 37
Hamiltonian approach in charged systems. ]:'d_ka LI AT] = Liar
For this purpose, we therefore consider a colloidal system

modeled as a primitive model electrolyte in a voluive szT[nlln(nlA3)—n1]+k—TJ [n®(r)—n,]2dr,
which containdN, colloids at number density,=N,/V and 2n,
valenceZ(>1), balanced by, counterions of number den- (9)
sity n;=N,/V and valencé—1). There is no added salt and
the following bulk electroneutrality condition holds: % [Ze][—enP(r)]
Fext= dr, 10
noZ+ny(—1)=0. (4) = elr =Ryl 19

The presence of added salt can be easily included but it does 1 [—enP)][—en®(r)]
]fcgu|=§f drdr’, (11

add to the algebraic complexity without altering the key elr—r']
physical conclusions. For pedagogic reasons we prefer to

keep the system simple to bring out the key ideas that helps F._ =0 (12)

in identifying and reconciling the differences between the e

two treatments of the same model. To this end, we will CONyyhereA is the counterion thermal wavelength amthe pro-
sider the case of point ions and point colloids, which will {5ic charge.

facilitate the analytic demonstration of the contribution of  1ha use of the ideal-gas expression in the first line of Eq.

various terms. Again, the inclusion of the colloid size can be(g) places this DFT formulation at the same level as the

incorporated as an extension but this does not alter the majyean field nonlinear Poisson-Boltzmann theory and the ex-
conclusions—added salt and size effects will be discussed 'Bansion to quadratic order in local inhomogeneities in the

the concluding section. second line of Eq.(9) is equivalent to linearizing the
Poisson-Boltzmann equation. Similar approximations were
[l. DENSITY FUNCTIONAL THEORY also made in the BCM calculation. The Coulomb interaction

terms in Eqs(10) and(11) have exact analogues in the BCM
treatment. So far, the assumptions in vVRDH and BCM are
identical.
The neglect of correlation effect$,,,=0, in Eq.(12) is
one of the differences between the vVRDH approach and the
BCM approach(see discussion that follows E@5) below).
This assumption is also equivalent to neglecting effects from
1) the fluctuation potential, which is normally included in the
SFIn(n)] _ at nO(r)=n(r) (5)  family of Modified Poisson-Boltzmann theorigs] of Cou-
on(r) H ’ lombic systems. The neglect of ion-ion correlation effects is
one reason why the vVRDH treatment will not reduce to the
where the Lagrange multiplige is chosen to satisfy the fol- Debye-Hickel limiting law because the treatment of Cou-
lowing normalization condition on the ion number density lombic interactions involving ions and colloids is no longer
symmetric as it is in the Debye-ldkel theory.
N The equation for the equilibrium counterion dengityr)
f n(rydr=Ny=nV. ©) is obtained by taking the first variation

The DFT involves the construction of the Helmholtz free-
energy functionalF[n)(r)] which depends on the varia-
tional or trial number density profiley*)(r) of counterions
for a given configuration of colloids at positiodR;}. The
equilbrium density profile n(r) is found by the Euler-
Lagrange condition
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SIFANY ()] ul/n™M(r)dr—N;J}

(13
o 7%, 7% 8 8 1-exfd— xRyl
which gives =— No— _
& & 1j=1 R”
n(r) 1#]
o =L Bed(n+ Bu, (14 (20
[—en(r)][—en(r’)]
where =_ !
Feoul 5 olr—1] drdr
¢ Ze —en(r’ No N
1[/(!‘)52 + [ ( ,)] dr’ (15) Zze2 0 9 1—eX[:[—K1Rij]
<1 e|r—R; elr—r’| = —_—
2¢e =1 J:j_ R”
I #
can be interpreted as the mean electrostatic potentialdaie N] N
to the colloids being fixed at positiod&;} and to the coun- Z%e%k, 20 20 R 22 K1 N
terions at the equilibrium density profitgr). 4e & = exf — x1Rij]1+ ——No.
What follows diverges slightly from vRDH who carried 1]
out their analysis in Fourier space. We shall not use this (22)
approach but the difference is only technical while the physi- _ . _
cal content remains unaffected. Using Ef|4) we can see Inserting the results in Eq$19)—(21) into Egs.(7) and
that Eq.(15) is equivalent to the differential equation (8) gives
No FAR}=7n(r)]
2 _ .2 - _
Vin() - kin(n=—«iz2, o(r=R), (16 =VkT[n1In(n1A3)—nl]
2
h Ze
where 2 P “INg+ ZZNokT
47n,Be
KfET (17 . 720 2% No exf — Ryl 7262 No No 4
2e = 1j=1 Rij 2e (= 1j=1 RI]
is the inverse Debye screening length due only to the coun- 1#] 1#]
terions. The bounded solution of E{.6) is (22)
K2Z N0 exd — Ky (r—R)] and from Eq.(2) with
n(ry=— (DFT). (18
47 41 |r_Ri| 1 No No 22 2
. . . . . HcoII0|d colloid™ 5 2 2 R.: (23)
It is easy to verify that this result for the ion density =1 J.;&,l ENij
satisfies the ion number normalization condition in Es).
and therefore by integrating Eqd.4) and(15) we can estab- we find for the effective Hamiltonian
lish the result:x=0. To carry out the necessary algebra, 3
VRDH suggested the standard technique of replacing the H®({Ri})=VKTIn;In(n;A%)—n,]
(1/r) kernels in the integrals in Eq15) by (exd —ar]ir) to Zze P 1
handle the apparent divergencies, and then take the dimit 7 ! No+ = 3 ZNkT
—0 at the end of the calculation.
We can now use the result for the equilibrium ion density 7262 No No exd — k1R ]
n(r), Eq.(18), in Egs.(9)—(11) to give (Rj=|R;—R;|) + >y = U0 (pFT).
2e =1 /=4 Rij
kT ]
Fid=Vk1Tn1|n(n1A3)—n1]+2—mf [n(r)—ny]?dr (24)
—VkT[n, In(n;A%) —n,] The fir_st term in Eq.(24) is the ideal-gas free energy. The
terms in parenthesis
ZZeZK No No )
ex R; Ze 1
_— ,2 1= R Fi=—|S—ENg+ SZNKT| (DFT) (25
i#j 2 2
n 2%k, N — EZN KT (19) is the one-body or volume term of vVRD{fbr point ions and
4e 0 2770% " point colloid9 which depends on density and temperature
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but not on colloid positions. This term is always negative and  Ill. STATISTICAL-MECHANICAL THEORY  (SMT)
gives a cohesive contribution to the free energy. The final

term is a sum of two-body screened Coulomb potentials oh
the form

The starting point of the statistical-mechanical theory of
CM [4] is the formal expression of the effective Hamil-
tonian, H®"({R;}) expressed as an integral over the counter-
ion coordinateqr;}

ufi(R)= ! (26)

extl— (R )] g | extt—BHURLINNI dir)

between the colloids with the screening lengthx(}/that
depends only on the counterion concentration, #@d). The
effective two-body potentiaue“(R,-j) between colloids is a
temperature or state dependent quantity throdgland re-
flects its character as a free energy. where(---) denotes an average over the counterion coordi-
The next step is to calculate the free energy of the systemates. The strategy is to calcul&dé”({R;}), which is a free
from Eg. (24). In the vRDH paper, they used a variational energy, by a temperature integration of the corresponding
method to estimate the free energy fruﬁ‘if(Rij). In the low- internal energy. To do this we define the total charge-density

=(exd - BH{R}.{r;H1), (31

density limit, they estimated this contribution to k& operatorp(r) for the colloids and the counterions by
No Ny
F,==Ngn fue“rdr
2=z NoMo | VD) PV =23, SR +(~0) 3, or=1))=polr)+ pa(r)
(32)

1
ZEZNOkT (DFT low-density limi (27

) o and the electrostatic potential operat(r) by
and the total free energy in the low-density limit becorf&s

Ny

= Ze —e p(r
F=F,+F, 3= 2 (—e :f p( ), dr’
2e2;< 1 s|r—R| =helr—r glr—r’|
=VKT[n, IN(n;A%) —ny]— | =——Ng+ = 5 ZNokT (33
1 so that the Hamiltonian describing Coulombic interactions in
+ 5 ZNokT the colloidal system is
Z%e’k
=VkT[n1In(n1A3)—n1]—TlN0 (Ze)® (Ze)(—e)

HUR} D=5 2 R R|+2 R T
|¢J i%] I

vV (DFT), (29 1

iy @

kTK(Z)Kl
=VKT[n; In(n;A%)—n,]— 5

2_;]]_ 8|Ri_r]
which is different to the Debye-Hikel limiting law result 17
(6] 1 .
-5 | prdnar-e., (34
F=VkT[n; In(n;A%)—n,]
kT 3 whereE; is the electrostatic self-energy of the ions and col-

Y (Debye-Higkel limiting law)  (29) loids that originates from the extias j terms that have been

included in the integral in the second line of E§4). Dif-
where ferentiating Eq(31) with respect tgs, and using Eq(34) we
have the exact relation

127

47 Be? 47 Be?
K%: B n022+ B

nlzKS-‘r K% (30) a[ﬁHeﬁ({Ri})]

1 A
Py =§f (B d(N)dr—E;. (39
is the usual Debye screening parameter for the whole system
that includes contributions from the charged colloids and the
counterions. The difference between E¢®8) and (29) is  The charge-potential correlation functio(r) (r)) can
significant, especially foZ>1 and this may be importantin Now be split formally into a sum of a mean-field term

determining phase equilibria. (p(r)><¢(r)> and a correlation term using Eg§3):
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(PP =(P))NP(r))
+f (P(p(r'))y—=(p(r)){p(r’ )>

glr—r’|

3 exf — ki (r—Rp)]
-1 |r—Ri|

z
n(r)z%i (SMT), (42

which is the same as the result in Eq$6)—(18) for the

A g DFT.
={(p(r r
(pNY(D) To find the correlation functiohq4(r,r"), we consider the
e’n(r)[8(r—r")+hyy(r,r"H)In(r’) , fluctuation potentialp(r,r’) which is the potential at given
+ elr—r| dr’, that the colloids are fixed &fR;} and one counterion of

charge(—1) is atr'. The potentialp(r,r’) therefore satisfies
36 the following Poisson equation:

where the integral in the second line in E§6) only de- 4 No
pends on the count_erion numb_er densi(y) and defi_nes the V2p(r,r')=— il ZeY, 8(r—R)+(—e)n(r)
counterion-counterion correlation functidnq(r,r’) in the € i=

external field provided by the fixed colloidal particled. So

Ea. (35) becomes X[L+hy(r,r)]+(—e)s(r—r")|. (43

JBHR}]
—B f(P(r )){¢h(r))dr —Eq The mean-field closures
+1J e®n(r)[8(r—r")+hyy(r,r")In(r’) hu(r,r)==B(—e)e(rr'),
2 glr—r’|
xdrdr’. (SMT) @37 n(r=n.,
This is a completely general result. The next step is to deter- % S(r—R)=n (44)
—Rj)=Ng

mine the average charge densify(r)), the average electro-
static potential fp(r)), the counterion number densityr),
and the counterion-counterion correlation functfon(r,r’) provide the approximate solution
in order to evaluate this expression.

The average total charge dens{f(r)) and electrostatic Be? exy — ki (r—r")]
potential(fjx(r)) and electrostatic potential are related by the hyg(r,r')=——
Poisson equation

r—r| (SMT). (49

4 The key results for the counterion densiiyr) in Egs.
~ a H H AN
V2((r))=——(p(r)) (39) (40) and (42 and for. the correlat|0n funqt|oh11(r,r ) in
€ Eqg.(45), can now be inserted in E(B7) to give the effective
. . HamiltonianH®™({R;}). The constant potentiay drops out
with average charge density of the calculation because of the neutrality condition:

N J{p(r))dr=0. After some algebra, see R¢#], and adding
0

(ﬁ(r))=Ze§l o(r=R)+(—e)n(r). 39 tive Hamiltonian

ff _ 3
To close Eqs(38) and(39) we assume the linearized Boltz- ~ H* ({Ri}) =VKTInyIn(nyA%)—ny]
mann distribution

Z%e’k, 2%k, 1
A o |72 No+ 3. No+ 2ZNOkT
n(r)=ny exy + Be(y(r)) - ¢)]
R _ 2,2 No N _ .
=n1+Be((Hr)—P)}, (SMT) (40 A ) e kRil .
28 i= J:j_ R”
— i#
where ¢ is the (constank potential at the position where :
n(r)=n,;. Combining Eqs(38)—(40), we see that (46)

This is almost identical to the DFT result in E@4)—the

the ideal-gas reference term, we have the result for the effec-

V2n(r)—«2n(r)=—«?z Z (41)  separation dependent effective pair potential is the same in
both theories. However, the one body or volume term, in the

parenthesis in E46), obtained from the SMT, contains the
with the bounded solution extra term{Ze’x Ny /(3¢)}:
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726k, 7€k, 1 Using Egs.(51) and(52) in Eq. (48), we obtain for the two-
Fi=—|—5,Not —3;—No*t 5 ZNokT]  (SMT). body free energyf,
& &€
“7 Z%€%k, Z€%k, 1 KTwd
This additional term originates from the second term on the FZ:( 2¢ 0 3g No+ EZNOkT - 12w Vi
right-hand side of Eq(37) that depends on the correlation (53

functionhq4(r,r"), and this is equivalent to the contribution
from the correlation functionaF,,,, Eq. (8), that has been Therefore from Eqgs(47) and(53) we have the final expres-
neglected in the DFT treatment, Ed.2). sion for the free energy

IV. THE ONE-BODY VOLUME TERM
F: F1+ F2: [ VkT[nl |n(n1A3) - nl]
In the DFT treatment, the one-body volume tefm,has
special significance because at low densities, the free energy
of the system originates from this term, see E28), and
therefore it appears to have a fundamental role in the study
of phase behavior in Coulombic systeh2d.

However, the formula in Eq.27) for estimating the con-
tribution of the effective pair potentiajeﬁ(Rij) to the free
energy is inadequate in this situation. For short-ranged tem-
perature independent pair potentials, this formula does give 3 KD
the leading-order result in density. However, for long-ranged = VKTIN1In(n1A%)—n,]— o vV (SMD), (54)
state dependent potentials sucmﬁfé(Rij), its use will lead to
omission of terms of equal order in density. Instead, as igyhich is in agreement with the Debye-ekel limiting law.
typical in Coulombic systems, we need to sum ring diagrams  yye observe that the constant one-body volume t&gris
to ensure we collect all terms of the same order in densitganceled exactly by identical terms that form part of the free
no. For a system with a pair potentiaf(r), the two-body  energyF, that has its origin in the effective pair potential
free energyF, can be calculated with the following formula eff(r) " This cancelation is more that just a curiosity of the

Z%e’k, Z€k, N 1
2¢e o 3¢ o 2

o

2262K1 ZeZKl
No+

+ 2¢e 0 3¢

127

1 KTwd
No+ 5 ZNokT | - v

3

that involves a coupling constantintegration; Debye-Hickel treatment. Indeed, Belloni has constructed a
11 general and powerful argument regarding the one-body vol-
Eo= ~Nen NUET(F)TTL+ hog(r M) 1dr |dN/X, ume term by con5|dgr|ng the comprgssmmty e_quatlon that

2 jo (2 0 Of[ (Ol ool M) relates thermodynamics and correlations functipt@. In

(48)  the present context, this argument proceeds as follows.
The most general form of effective Hamiltonian can be
wherehgy(r,\) is the total colloid-colloid correlation func- written as
tion of a one-component system of colloidal particles that
interact with pair potential Au®"(r)]. We now sum simple He"({R ) =F;+W({R}), (55
ring diagrams by calculatinkyys(k,\), the Fourier transform
of hoo(r,\), which is a function of wave numbdg via the ~ Where W({R;}) may contain two-, three- and higher-body

Ornstein-Zernike equation: terms. It is clear that all ensemble averages of quantities that
only depend on the colloid coordinates, such as the colloid-
- Too K,\) colloid pair-correlation functionhg(r) or its Fourier trans-
hoo(k.A) = 1—ngCoo k,\) 49 form, hoo(k) can only depend oW({R;}) and not on the
constant one-body volume terf, . One route to thermody-
with namic properties is via the compressibility equatiéh
eff 2
COO(r,)\):_)\uk(r):_)\(Ze) exd Kll’], 0. _k_Tﬂ
T ekT r V JP
(50)

_ [14n3h4(0)][1+ nohod(0) ] —nona[hoy(0) 12
No[ 1+ n3h15(0) 1+ N3 1+ nghog(0)]— 2ngn;hgy(0)

Combining Eqgs(49) and(50) gives

(Ze)? exd — kp(\)r]

hoor M) =\ — = ; r>0, (51 1 - 1 ~
= —[1+nohoo(0)]= —[1+n;1hy;(0)], (56)
No ng
where
2 2 where the local electroneutrality conditions about a single
kp(N)=(Nkp+ K7)™% (52 charged colloid or counterion
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~ =~ | 2
Z=—nyZhy(0) +n1hpy(0), See e J' Pap(r)
vV 28 ;3 N,Z,NpZg ; dr
—1=—ngZhy(0) +nsh15(0), (57 )
2 J T thy(rn)dr
= N,Z,NsZ rh,
have been used to express the first line of &) in terms of € ap e RatRg g

only the correlation functiorhy(0) orhy;(0) in subsequent )
lines. In particular, from the second equality of E§6), we me 2
; -— +Rp)%.
can see that for the salt free system, all thermodynamic quan- & ;5 NaZaNpZp(Rat Rp) (58)
tities can be expressed only in terms of the colloid-colloid

pair-correlation functiorho(0), which in turn does not de-

pend on the constant one-body volume téfmm However, The first term in the second line depends on fhet to be

the constant one-body volume term will play a role in theo-determined pair-correlations functions, s(r) while the sec-
retical approaches that involves constructing the total fre@nd term is exact and is a consequence of the straightforward
energy in successive stages such as with the DFT formulaoupling between Coulombic interactions and particle size
tion, where the one- and two-body contributions to the freeyifferences that comes form the energy integral in the inter-
energy is formulated and calculated separately. In such afig| 0<r<(R,+ Rz) whereh,,(r)=—1. This second term
approach, the role of the one-body volume term will be tojs negligible for ionic size differences typical for ionic solu-
cancel out a corresponding contribution from the positiontions. However, for size asymmetries that are characteristic
dependent part of the effective Hamiltonian rather than belng)f colloids and ions, this term can account for up to 50% of
the source of the free-energy term that controls phase behaye internal energy when compared to Monte Carlo simula-
ior as inferred earlief2]. tion studied7]. Recent attempts at modeling phase behavior

The third equality of Eq(56) reveals the importance of driven by Coulombic interactions in colloidal systefis2, 8]
including ion-ion correlations as well because the assumpg|| seem not to have fully accounted for this size-asymmetry
tion Feor=0 is equivalent to assuming the counterion- contribution and its importance in determining Coulomb in-
counterion correlatioh,,(0)=0, and thereby violates one of teraction driven phase behavior in colloidal systems has only
the local electroneutrality conditions in EG7). just been consideref®]. Furthermore, the introduction of

finite sizes for the ionic components will generate terms be-
yond just two-body effective potentials in the effective

V. CONCLUSIONS Hamiltonian and the importance of such higher body terms
remain to be quantifief0].

Modern DFT has been brought to bear on the problem of |n the salt-free case, the inclusion of size asymmetry be-
phase behavior in colloidal systems whose properties argyeen the colloid and the counterions is sufficient to give rise
dommated by _Coulomb|c interactions. W_hlle the DFT_l‘or—.t0 a gas-liquid phase equilibriufi®]. The general physical
malism has enjoyed much success in solid-state physics, it@ason for this equilibrium is easy to understand although the
application to colloidal problems requires making the necespresent linear Debye-Htkel treatment may not be accurate
sary theoretical connections with established approaches ifjth the quantitative details of the phase boundary. With the
the colloid literature and the clarification of its status with gqdition of salt, the DFT theory predicts the existence of a
respect to other existing theories. While the discussion angpper as well as a lower critical salt concentration between
pedagogic illustrations presented herein are only based on\ghich the system can exhibit gas-liquid phase equilibrium
point-ion and point-colloid model without added salt, it does[2]. The physical reason for the existence of lower critical
serve to highlight the subtleties of the problem and the relaggjt concentration is less obvious.
tions between different theoretical approaches. We have The role of Coulombic effects on phase Separation in col-
shown that the DFT formalisii2] is identical to the earlier |gigal systems is a problem first studied by Langnuit]

statistical-mechanical theofy] provided that many years ago and the problem remains open today.
(i) ion correlations effects are included in the DFT, and

(i) the calculation of the free energy from the effective
pair potentialu®®(r) is consistent with the calculation of the ACKNOWLEDGMENTS
one-body volume term in so far as obtaining consistent or-
ders in the number density as typical in Coulombic systems. This research was funded in part by the Australian Re-
Clearly a creditable model of colloidal systems, evensearch Council and their support is gratefully acknowledged.
within the primitive model, should allow for the colloids and It is also a pleasure to acknowledge the contributions of Luc
counterions to have different hard-sphere r&iiandR; . In Belloni (CEA/SACLAY) and Per LinséLund) who offered
this case, the excess internal energy due to Coulombic intetheir time generously and patiently to discuss electrostatic
actions has the general forna(8=0,1) matters.
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